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1 Introduction

The U.S. Army Corps of Engineers (Corps) is responsible for maintaining
and constructing coastal structures nationwide. The Corps currently maintains
over 1,500 coastal structures. These structures include rubble structures such as
breakwaters, jetties, and revetments as well as sea walls, timber cribs, and float-
ing breakwaters. The majority of these structures are of rubble-mound construc
tion. Most of these structures provide protection for navigation projects. They
prevent sediment from accumulating in inlets and provide shelter for navigation
and for harbors.

The basic deterministic methodology used for designing breakwaters and
similar rubble-mound coastal structures was developed several decades ago and
includes a combination of analytical techniques, empirical formulae, and physi-
cal scale models. Figure 1 shows the primary failure mechanisms that are com-
monly addressed in modern rubble structure design. The majority of these fail-
ure mechanisms are addressed in the design process using empirical formulae.
The degree of wave transmission is typically the primary functional criterion.

Preliminary design includes defining project requirements, and then deter-
mining environmental design conditions, such as design storm characteristics
over the structure’s intended life. Structure design follows with specification of
structure type and layout, and armor, underlayer, and core material. The struc-
ture cross section is determined by specifying the crest height and width, type of
toe, and seaward and landward slopes. The crest height and width are the lowest
values that will still provide minimum allowable overtopping rates. The type of
toe is determined based on the local subgrade material, length of seaside slope,
and type of structure armor. The armor is sized to prevent more than a few per-
cent of the units from being displaced in the event of a design level storm. The
design process is traditionally deterministic, although some elements of proba-
bility theory have been utilized. It has been common practice to specify wave
height as a stochastic parameter associated with a design storm with a given
return period. But many more stochastic variables must be included in order to
adequately assess the reliability of a coastal structure design.

Reliability methods utilize the same probability theory concepts required for

specifying a design wave or for determining confidence limits and are therefore
quite simple to apply. They are readily adaptable to a wide variety of coastal
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Figure 1. Breakwater failure modes

structure design and evaluation problems and provide a powerful tool for ratio-
nally making economic compromises that are always necessary in civil engineer-
ing. This report discusses reliability techniques that facilitate inclusion of the
random nature of the rubble-mound response in the design process. These reli-
ability techniques can be utilized to gain insight into the degree of uncertainty in
the empirical design equations. This is very important for rubble mounds as
their response varies widely, even in controlled laboratory conditions. But it
must be kept in mind that these methods do not guarantee a more reliable struc-
ture. Limited local data, the lack of design guidance for certain failure modes
(e.g. scour), and unknown and somewhat unpredictable construction quality,
among other things, can reduce a structure’s reliability far below the design
engineer’s estimate. Therefore, while reliability methods provide a powerful
tool for gauging and comparing the uncertainty of certain failure modes in our
designs, the actual probability of failure of the as-built structure may be signifi-
cantly different.

Reliability methods can be a powerful tool in estimating uncertainty with
respect to many failure modes. Consider, for example, armor stability design.
The preliminary design process for specifying the armor layer is deterministic
and can be characterized as determining a design load and then defining the
appropriate structural capacity. This is done with a single empirical stability
equation which incorporates a wave height statistic from an assumed distribution
associated with a particular storm return period. The design is then evaluated
using scaled physical models. The deterministic design method has several
weaknesses, as follows:

a.  Only the loading variables associated with the wave are specified
according to measured distributions. The capacity variables are typi-
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cally best-fit mean values of widely scattered quantities. Confidence
limits are rarely specified with the formulae and provide little help to the
designer for determining the risk or reliability in a given design or in the
future performance of an existing structure.

b. Laboratory experiments designed to validate design formulae are done
under highly controlled conditions and the prototype may be quite dif-
ferent with more widely varying parameters.

c. The equations do not include the interaction between failure modes, such
as structural response and hydraulic stability or primary armor stability
and toe, crown, or transitional armor stability. They typically give no
indication of future performance of a damaged structure.

Given the uncertainties in deterministic breakwater design using empirical
equations, there is need to incorporate objective evaluation of the performance
risks of either new or existing structures. Coastal structures can be allowed to
sustain considerably more damage than land-based structures because human
lives are typically not in jeopardy. Engineering reliability methods can be used
to compare repair scenarios for a given structure or to rank various projects.
With repair costs included in the economic analysis, the most economical plan
meeting the specified reliability can be selected. This evaluation technique pro-
vides more economically efficient coastal rubble structure designs and provides
allowance for periodic repairs.

It is standard practice within the Corps of Engineers to use reliability meth-
ods to compare competing engineering alternatives. But for coastal structural
engineering, little work has been done to synthesize data collected over several
decades into a usable format for reliability analysis. Carver (1983) performed a
rubble-mound armor stability experiment investigating the variability in stability
due to the natural variations in stone placement. As one would expect, the wave
height corresponding to the no-damage condition varied widely. Using these
data, it is shown in Chapter 3 of this report that the variability in stability can be
accounted for in the design process.

Typically for design, all dominant failure modes must be identified and a
fault tree constructed for each design alternative. A fault tree is a flowchart of
failure modes. An example of a fault tree for a breakwater analysis is shown in
Figure 2. The references herein provide guidance on establishing a fault tree.
Moritz et al. (1994) performed a reliability analysis of engineering alternatives
for a major rehabilitation of the Burns Waterway Harbor, Indiana, breakwater.
They describe the fault tree and evaluation of alternatives. Although the reliabil-
ity calculations are not shown, they provide an overview of the entire alterna-
tives analysis utilizing reliability methods and an economic analysis.

Although several reliability analysis methods have been used for coastal
structures, no rigorous comparative analysis of the various methods has been
published. Meadowcroft et al. (1996) compared the Level III Monte-Carlo tech-
nique to a Level II mean-value approach. Although details of the study were not
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described, they found that the Level II approach “provided reasonable agree-
ment” to the more laborious Level III approach. The mean value approach is
described in the following two chapters as is a more accurate Level I method

termed the “design point approach.”

This report presents an introduction to and comparison of various Level II
reliability methods as applied to coastal rubble structure design. Several compu-
tational techniques of varying degrees of accuracy are presented. Examples of
computational methods are shown in tabular format and FORTRAN programs.

Allowable
Wave
Transmission

est Case with
espect to

Functionality

Seaward
Armor Stable
Excessive
Wave Harbor or Ship
Transmission Damage
Input
Conditions
IAllowable
Wave Breakwater
Transmission Damage
Seaward
Armor
Unstable
xcessive Breakwater
ave and Harbor or
ransmission Ship Damage

Figure 2. Partialfault tree for breakwater analysis
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2 Engineering Reliability
Methods

Reliability Methods Overview

Engineering Technical Letter (ETL) 1110-2-532 (U.S. Army Corps of Engi-
neers 1992) provides a review of reliability methods and the underlying proba-
bility theory. Other documents that provide good reference are Harr (1987),
Benjamin and Comnell (1970), Ang and Tang (1975), and Thoft-Christensen and
Baker (1982).

Reliability or conversely, probability of failure, is computed from the proba-
bility distribution of a limit state equation. Several reliability definitions that are
useful follow.

a. Reliability. Probability that limit state equation will be greater than limit
state.

b.  Probability of Failure. Probability that limit state equation will be less
than limit state. ‘

c.  Limit State Equation (otherwise known as the failure function or perfor-
mance function). Equation describing the engineering performance of
interest expressed as either the difference between capacity and demand
(safety margin) or ratio of capacity to demand (safety factor). Some

- authors use the words resistance and load rather than capacity and de-
mand.

d. Safety Factor. Ratio of capacity to demand.
e. Safety Margin. Difference between capacity and demand.

f.  Limit State. Level of performance for which capacity equals demand
(safety factor = 1 and safety margin = 0).

Chapter 2 Engineering Reliability Methods




g Failure Surface. Surface along the limit state described by the limit
state equation.

To illustrate these definitions, consider breakwater armor stability characterized
by the Hudson (1958) equation.

H3
W = Y

) KD(S,—1)3cot6 M

where .
W = weight of armor unit
Y. = specific weight of armor unit material
H = design wave height at the structure toe
S, = specific gravity of armor unit material
® = sea-side angle of armor slope relative to the horizontal
K, = tabulated empirical stability coefficient

For this equation, K}, is defined for a given level of performance, typically the
no-damage condition represented by less than 2 percent, by count, of the stones
displaced from the seaward structure face. To begin the reliability analysis, the
equation of interest is usually rearranged to form a safety factor, F= C/D, where
C represents capacity and D represents demand. In this case, the limit state is
prescribed when the safety factor is equal to one. Performance is satisfactory if
the safety factor is greater than one and unsatisfactory when the safety factor is
less than one. For a safety factor approach, the Hudson limit state equation
could be formulated as

W K (S, -1)*cotd

Another way to express the limit state equation is as a safety margin, g = C - D.
The condition under which this margin is less than zero prescribes unsatisfactory
performance, the condition above zero satisfactory performance, and the condi-
tion at zero describes the limiting state of performance. The Hudson equation

- can be rewritten in the form of a safety margin as

g = WKLS,-1)°cot -y H3 3)
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An equivalent safety margin can also be formulated as

g = AD, (K,cot®)® - H 4)

where D, = (W/y,)"” is the nominal diameter of the armor unit and A=S, - 1.

Because some or all of the variables in the limit state equation are
nondeterministic, the limit state equation is also nondeterministic. The process
of defining the reliability requires defining probability density functions (pdf) of
all stochastic variables in the performance function and combining these to de-
termine the overall reliability of the given performance function. The reliability
is computed, using probability theory, as the probability that the performance
function will exceed the limit state. For the Hudson equation characterized by a
safety factor in Equation 2, the reliability is the probability that the weight-domi-
nated capacity parameter in the numerator will exceed the wave loading parame-
ter in the denominator, i.e. the probability that F will exceed one.

Several reliability estimation methods are commonly used in civil engineer-
ing to determine the reliability for a particular limit state equation given the pdf's
of the underlying variables. These include Level I methods, where a coefficient
is used in the design equation to account for uncertainties in the design. This is
the method used for the familiar Load and Resistance Factor Design (LRFD)
structural design method. Level II methods provide approximations to the reli-
ability, assuming the limit state equation to be normally distributed and then
converting all the random correlated non-normally distributed variables to non-
correlated normally distributed variables, or assuming a mathematically simpli-
fied form of the failure surface, or both. Level III methods utilize the actual
distributions of the random variables to compute the reliability of the limit state
equation. Specific techniques for the Level II and III methods are discussed
below.

a. Direct Integration. A Level 11l method where the limit state reliability
or conversely, the probability of failure, is computed by integrating or
convolving the capacity and demand pdf’s.

b. Monte Carlo Simulations. A Level IIl method where the limit state
reliability is approximated, through a large number of realizations of
capacity and demand pdf’s, by the proportion of realizations where the
limit state equation is greater than the limit state.

c. Taylor Series Approximations. A Level Il method where the limit state
equation is approximated by a Taylor Series expansion about some criti-
cal point usually truncated to first or second order. The reliability is
computed as the minimum distance between the failure surface and zero.

d. N-Point Estimates. A Level Il method where the pdf of the limit state
equation is approximated as N lJumped masses.

Chapter 2 Engineering Reliability Methods




Taylor series and N-Point estimates typically provide reasonable accuracy
without having to perform thousands of calculations. They are particularly use-
ful when data are sparse and use of empirical equations derived from data entails
a great deal of uncertainty. Such is typically the case with coastal structure de-
sign. Level IT methods also provide insight into the sensitivity of reliability to
various parameters throughout the calculation process that is useful for the engi-
neer. Several popular Level IT methods are compared herein. More accurate
Level III methods can be used to determine the reliability if the density functions
of all nondeterministic variables are known or assumed; but convolving more
than two density functions is computationally intensive and is therefore not gen-
erally practical. Also, for coastal structure engineering, the probability distribu-
tions of the various parameters are seldom known with any certainty.

Reliability Concepts

As stated above, the first step to estimate the reliability of a design is to es-
tablish a limit state equation in one of two forms:

safety margin: g(x) = C(%;) - D(%,) (5)

safety factor: F(X) = C(%.)/D(%,) (6)

such that g>0 or F>1 represents satisfactory performance. In these equations, %
represents a set of stochastic variables describing geometry, material properties,
and loading for the particular limit state, C is a function of the set of stochastic
capacity variables X, and D is a function of the set of stochastic demand vari-
ables Xj,. Accordingly, the limit state function is also stochastic. Consequently g
and F can be described by pdf’s, as illustrated in Figure 3. Note that g or F can
be a function of many variables. The failure surface is defined by the limit state
g=0or F=1. If the limit state is a function of more than two variables, say N
variables, an imaginary failure "surface” in N-dimensional hyperspace can be
described.

Reliability with respect to the performance function g can be computed from
the relation R=P(g>0), which states that reliability R is the probability of satis-
factory performance (g>0). P represents the exceedance probability distribution
of g. Conversely, the probability of failure P, with respect to the performance
function is given by P;= P(g<0). Similarly, for a safety factor representation
R=P(F>1) and P;= P(F<1). Figure 3 illustrates several of these points. The
region under the pdf to the left of the origin represents the probability of failure
and that to the right represents the reliability. Note that the term failure is not
used to describe the structure’s performance directly. It is used to describe the
fact that the performance function does not meet the design criteria. For exam-
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ple, if the performance function for armor stability, say the Hudson equation,
describes the design condition for “2-percent armor displacement,” then the term
failure would describe the limiting condition of 2 percent of the armor being
displaced. This contrasts with the conceptual picture most of us might have of
breakwater failure where the rubble mound has collapsed or been breached.

p(g)

g <0, failure g > 0, safe region

Figure 3. Definition sketch for the limit state equation pdf and reliability index

Often the limit state equation pdf is not completely known but the mean and
standard deviation are known. Based on the principle of maximum entropy, the
normal distribution can be assumed if only the first two moments are known
(Harr 1987). If capacity and demand functions are assumed to be normally dis-
tributed, then the limit state relation will also be normally distributed. If capac-
ity and demand are expressed in standard normal form

c'= D'= ™

then the limit state relation (g = C - D = 0) becomes

0cC' - 0pD' v pe -y =0 (8)
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where p and o are the mean and standard deviation of the capacity function
and p;, and o, are the mean and standard deviation of the demand function. Note
g(C.D) =0 is displaced a distance B from the origin in the transformation to
g(C'.D’) = 0. This distance can be found from simple geometry (Hasofer and
Lind 1974) as )

T T T
b= = ©)

o, 2 2
‘ Oc * 0p

if C and D are uncorrelated (Figure 4). B is termed the reliability index. Here M,
and o, are the mean and standard deviation of the safety margin performance
function. If C and D are correlated, the expression becomes

m Mo - B
p==—=-= — (10)

2 2
g ‘/oc + Op = 2pp0.0,

where py, is the correlation coefficient between C and D defined as

Ocp _ E[(C - pc)(L - I-ID)]
OcOp 0cOp

(11)

Pep =

where 0y, is the covariance between C and D and E[ ] is the expected value of
the quantity inside the brackets. Note that B is simply a unit standard normal
variate along z = (X - p)/0, = 0. The reliability can therefore be approximated
using the reliability index as

R = P(g>0) = [ p,(0)dx = @(B) (12)
0

where p,(x) is the pdf of g(x) and ®(p) is the widely tabulated standard normal
distribution function evaluated at B. The definitions for F(x) would be similar;
but the log-normal distribution would be used because the normal distribution is
an appropriate approximation for sums of variables while the log-normal is ap-
propriate for products.

The reliability index is graphically defined in Figures 3 and 4. It can be seen
that the index represents the distance from the expected value of the perfor-
mance function to the failure surface in units of standard deviation. Thus B = 2
implies that the mean of the performance function lies two standard deviations
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above the limit state. The reliability index is then a measure of the likelihood of
the structure to perform satisfactorily, with respect to the performance function
in question. Reliability increases with increasing mean and with decreasing
standard deviation of the performance function. Table 1 shows the correspon-
dence between the reliability and the reliability index. This correspondence will
be valuable later when interpreting applications of the reliability methods. In
Table 1, @ is the inverse of the normal distribution function.

|Table 1 l
Correspondence Between Reliability Index and Reliabilit :

| R=E;OQ=EF>1; =0

| 0.500 0.0

" 0.690 . 0.5

" 0.840 1.0

" 0.933 1.5 I

“ 0.977 2.0 “

l 0.9987 3.0 "
0.999968 4.0

In general, g will be a nonlinear function of the random variables z. The case
for two independent random variables is depicted in Figure 4. Note that the

" transformation into a normalized coordinate system has been performed where

Z= (% - w)/o,. The reliability index is the minimum distance from the mean
state Z = O to the limit state g(z) = 0. The closest point on g(z) = 0 is known as
the design point z,,.

Linear

Non-linear

Figure 4. Example sketch of linear and nonlinear limit states
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Often in computations, the limit state relation is approximated as a linear
failure surface using a Taylor series expansion either about the mean point or
about the design point. An important characteristic of the design point expan-
sion is that the resulting reliability index is invariant to the arbitrary functional
form of the limit state expression; whereas a mean point approximation will be
dependent on the functional form of the limit state. The two methods will be
compared in the next section.

If the random variables Z are non-normal, an approximate normal distribution
can be fitted to the actual distribution such that the density and distribution are
unchanged at the design point. With the design point normal variate designated
z4 = (X4 - B)/0,, the mean and standard deviation of the fitted density function
are

R LA
7 ) (13)
W, = x, - OP&)o,

where P and p are the distribution and density functions of random variable x, ®
and ¢ are standard normal distribution and density functions, and ®' is the in-
verse of the standard normal distribution.

Taylor Series Approximations of Reliability

Taylor series mean point method

Based on the preceding discussion it appears that a simple method for esti-
mating the reliability would be to approximate the limit state either at the mean
or design point on the failure surface. This can be done using a Taylor series
expansion of the function about either point. The mean point expansion can be
done directly; but, because the design point is a priori unknown, the design point
solution requires an iterative approach. Either way, g is first linearized about the
mean point X = 0. The Taylor series approximation of the safety margin about
the mean point is given by

g =g(p) +Vge(x - (14)
or in scalar notation
9
g28) + Y2 -n) (15)
i-1 OX.

3
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where = is used to denote a first order approximation, Vg » is the dot product
operation using the gradient of g, partial derivatives are evaluated at each mean
value, and N is the number of random variables in g. The general expressions
for the expected value and variance of g as a function of correlated random vari-
ables are

Elgl = n, = E[g(p) + Vge & - pjl = g(u,) (16)

Vigl = o, = Vg VAl Vg" Coan

where E is expected value and V is variance and Vg" is the transpose of Vg. For
N variables, the variance becomes

33> [95-950 ) (18)
g £ X%

2
D> (_aiox‘) (19)

The reliability index and reliability can be computed from the mean and variance
using equations 10 and 12, respectively.

For the safety factor solution, the expected value and variance can be com-
puted using the log of the mean and variance of the safety factor relation approx-
imated at the mean or design points according to Benjamin and Cornell (1970)
as

o
Hp = Inp, - ;F (20)

2
[."_F . 1) 21)
K

where p; = F(u,), as in Equation 16, and o is similar to Equation 18. Then the
reliability index is B = p, /0, and reliability R = ®(B).

Chapter 2 Engineering Reliability Methods
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Taylor series finite difference approximation

The Taylor series mean point approximation is typically employed using a
finite difference approximation for the partial derivatives in the variance. The
calculation is often performed using the difference between the limit state rela-
tion at one standard deviation above the mean and one standard deviation below
the mean as follows

ag g(xi+0,') - g(x,'_o:i)

a—x,. = 20, (22)
This equation is often written in shorthand as
%8 _8 -8
ox; 20, (23)

The safety factor equations would be similar. The mean point analysis with
finite differencing is commonly known as the Taylor Series Finite Difference
(TSFD) method. The strength of this technique of reliability estimation is that it
provides a closed form solution that can be done easily using a handheld calcula-
tor or a spreadsheet program. The weakness of the mean point method is that the
solution is dependent on the form of the limit state equation, i.e. § and R can
vary depending on the form chosen. Additionally it is less accurate than more
rigorous solutions. Example calculations are shown in Chapter 3.

Taylor series design point method

Milakar (1994) proposed a more accurate iterative solution for the design
point definition of the reliability index. Consider z,= AV g(Z) as an iteratively
improved estimate of the design point, where A is an arbitrary constant. Then
substituting into Equation 14, expressed as a function of z, yields the design
point on the linearized failure surface which is closest to the mean as

T o =

B4 = Izl now represents an estimate of the reliability index. This solution is simi-
lar to TSFD but more generalized. The iterations start with a mean point ap-
proximation. At each iteration step, a new design point is computed from Equa-
tion 24 and the iterations continue until convergence is achieved. Typically the
partial derivatives are numerically approximated using a finite difference formu-
lation such as
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Jg _ 8z+h) - 8@

Py A (25)

where A is some small increment in z. Hereafter, this iterative TSFD method
will be referred to as ITSFD.

A general FORTRAN program for the ITSFD computation is shown in Ap-
pendix A. The main program comprises the reliability engine, while the specific
limit state equation is computed in subroutine LIMSTATE. Subroutine
DEP_MEAN is used to compute a range of one variable in the limit state equa-
tion so a range of reliabilities can be computed at one time. An example break-
water limit state equation is encoded in Appendix A and example computations
are discussed in Chapter 3.

Point Estimate Method

Point estimate methods (PEM), as described in Harr (1987) and ETL 1110-2-
532 (USACE 1992) provide invariant approximations to the reliability index.
The N-point estimates proceed in a similar fashion to the Taylor series approxi-
mations except, rather than the limit state relation being approximated, the prob-
ability distributions are approximated at N points. PEMs have the advantage that
they do not require computation of derivatives of the limit state equation nor do
they impose assumptions on the existence and continuity of the first few deriva-
tives of the limit state equation as do the Taylor series expansions (Rosenbluth
1975). They also require no assumptions on the correlation of independent vari-
ables. Further, the methods can be done on a calculator or in a spreadsheet and
do not require the laborious calculations of the Monte Carlo method. Accuracy
of the methods depends primarily on the accuracy of the approximate probability
mass functions.

A common PEM is a two-point approximation to the probability distribution,
lumping the distribution into two masses at one standard deviation above and
below the mean. This method is similar to the TSFD mean point technique de-
scribed above. The accuracy of the method is similar to the accuracy of the
TSFD method discussed above.

System Reliability

The reliability of various modes of failure or multiple components in a design
can be treated using a system analysis. System analyses are discussed in the
references and will only briefly be discussed herein. System reliability is deter-
mined by combining the components in series or parallel fashion, or a combina-
tion of the two.
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Series system

A system of components can be considered to be in series if failure of any
one component leads directly to system failure. If an individual component has
a probability of satisfactory performance, or reliability, of R, then the reliability
of a system of n components in series will be the product of the individual
reliabilities as

R, = RiR,R,..R,..R, (26)

Parallel system

A system can be considered to be parallel if failure of all components must
occur for system failure to occur. Therefore the reliability of a parallel system is
given by’

R =1-(-R)1-R)IL -R)..(1 -R)..1 -R) 27

Parallel series system

Most projects can be considered to be a collection of parallel and series sys-
tems. The analysis becomes very complex when interaction between the compo-
nents is considered. This is particularly true for coastal structures, as the interac-
tion between modes of failure is generally unknown. Several methods exist for
determining the reliability of a complex system. The most widely used is simply
to determine the upper and lower bounds using a separate series and parallel
analyses. Harr (1987) suggests methods for narrowing the bounds. Another
common technique for analyzing complex systems is to apply weighting factors
to each component. These methods are beyond the scope of this report but are
discussed at length in the references.

The most practical approach may be to focus on the components or subsys-
tems that govern the reliability of the overall system (USACE 1992). Therefore,
breakwater reliability may be judged acceptable if the reliability index for each
component exceeds a specified level.
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3 Breakwater Reliability
Examples

Introduction

In this chapter the reliability computational methods of the previous chapter
are applied to coastal rubble structure design, and the methods are compared.
The reliability indices are computed for common limiting states of performance
including armor unit stability, armor structural response, and runup and overtop-
ping. Any limit state equations or performance functions can be used in the
reliability analysis. Those used herein are considered accepted practice as estab-
lished in the Shore Protection Manual (SPM 1984). In addition to the Hudson
equation, as previously described, the stability equations of van der Meer (1987)
are also evaluated. The performance functions of SPM sections 7-1I-1 and 7-1I-2
are used for runup and overtopping, respectively. The methods of Melby (1989,
1993) are used for concrete armor stress evaluation.

Hudson Armor Stability Limit State

The Hudson equation was rewritten in the form of a safety factor (Equation
2) or as a safety margin (Equations 3 and 4) in Chapter 2. All variables in the
Hudson equation are considered stochastic in this analysis.

Wave height

~ The single-storm wave heights generally follow a Rayleigh probability distri-
bution of the form

pQ) =2e™ (28)

where { = H/H,,,, and H,, is the root mean square wave height. The significant
wave height is usually given in design and can be incorporated using the relation
H,=1.416 H,,,. The mean and standard deviation required for the reliability
analysis are given by p,=0.886H,,, and 6,=0.463H,,, respectively.
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Note that any distribution of wave heights could be used, including a mea-
sured distribution or an extremal Weibull distribution. Additionally, because
water depth and wave height distributions are correlated in shallow water, any
long-term analysis must take this into account. A number of techniques exist to
facilitate combination of the long-term wave height and water level distribu-
tions, including Monte-Carlo simulation, Empirical Simulation Technique,
(USACE 1996), and direct integration of historical distributions. Within this
report, the wave height distribution is overly simplified to focus on the reliability
calculation.

Empirical stability coefficient

The stability coefficient depends on many factors including armor shape and
roughness, wave period, depth, storm duration, level of damage, and offshore
bathymetry. In deterministic design, the minimum stability coefficient derived
from hydraulic stability tests is typically used. For example, for two layers of
rough angular stone placed on a structure trunk exposed to breaking waves , the
SPM recommends a minimum stability coefficient of 2. But, as can be seen in
Figure 5, there is a wide variation of minimurm stability coefficients, even for the
limiting case of breaking waves on a breakwater trunk. The variation shown in
this figure is only due to variability in laboratory mound construction and vari-
ability in wave phasing. Carver (1983) provided data which suggest a mean K,
of 2.59 and a standard deviation of 0.65 for angular stone on a jetty trunk ex-
posed to breaking waves. For concrete armor units, the variation of stability
coefficients is equally wide. For dolos, data of Carver (1983) suggest a mean of
21.5 and standard deviation of 5.6 for similar wave and structure conditions. For
dolos stability, the coefficient of variation, defined as the ratio of the standard
deviation to the mean, is 0.26, according to these data. For other concrete armor
shapes, a similar coefficient of variation can be assumed where insufficient data
exist to estimate the value.

Structure seaside slope, armor specific weight, and armor weight

The seaward structure slope 6 is usually carefully controlled in construction
and, with no supporting data, a coefficient of variation of 0.05 is provisionally
used herein. The specific weight of stone and concrete ¥, is assumed to have a
coefficient of variation of 0.03 based on prototype data (Bryant and Mlakar
1990). The final stochastic variable is the armor weight. For stone, the grada-
tion is prescribed as 75 percent to 125 percent and can be assumed provisionally
to follow a normal distribution with a coefficient of variation of 0.10. For con-
crete armor, the coefficient of variation of weight is small and is assumed to be
0.01.
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Figure 5. Histogram of Hudson stability coefficients for stone armor on
breakwater trunk exposed to breaking waves (Carver 1983)

Table 2 summarizes the variable means and standard deviations for angular
stone and dolosse used in the following reliability analysis.

Table 2 :
Statistics for Hudson Limit State Variables

Random Mean Standard Coefficient of Varia-
Variable Deviation tion
p *] c
e ——————1 1]
l Stone weight, W Range Range 0.10
Stone eq. coefficient, 2.59 0.65 0.25
Ko
" Stone specific weight, 2405 kg/m® 72 kg/m® 0.03
Yr
Dolos weight, W Range Range 0.0
Dolos eq. coefficient, 215 5.6 0.26
Ko
Il Dolos specific weight, 2405 kg/m? 72 kg/m® 0.03
\G
Wave height, H 270 m 141m 0.52
Structure slope, cotf 2.0 0.1 0.05
]
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Iterative TSFD reliability calculation

The reliability calculation using the ITSFD approach of Equation 24 and the
safety margin Hudson limit state of Equation 3 has been applied herein using the
statistics from Table 2. The resulting reliability and reliability indices versus the
expected value of weight of stone are shown in Figure 6. A similar plot is
shown for dolos armor in Figure 7. In these figures, B refers to §, the reliability
index. In Figure 6, the results for the equations of van der Meer (1985) indicated
by VdM are also shown. These equations will be discussed in the following
section. As can be seen in Figures 6 and 7, reliability increases with armor
weight from zero quickly, approaching R = 1 asymptotically. Using the SPM
recommended K, =2 with H,,,,= 1.8 H_ = 5.5 m yields a design armor weight
of 41 tons, which has a reliability of R = 0.98. The corresponding reliability
index is approximately 2. The reliability index increases at a slower rate than R

with armor size.

n
&)

—t
o N

Reliability Index, B
Reliability, R

—————+———10.5

0 10 20 30 40 50
Armor Weight in Tons

" Hudson B T VdM B “=" Hudson R = VdM R

Figure 6. ITSFD solution for stone stability limit state
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Figure 7. ITSFD solution for dolos stability limit state

TSFD reliability calculation

The underlying calculations for the TSFD safety factor approach in Equations
20 and 21 with the partial derivatives evaluated using the finite difference calcu-
lation of Equation 23 are shown in Table 3. The stone weight for this calculation
corresponds to Ky, = 2. It can be seen that the values of each variable are all
mean values except for a single perturbation one standard deviation above the
mean and one below. The reliability index is calculated as P = p, /0, = 1.4.
The influence factors, given by

_oF

% T o On (29)

show the influence of each variable on the overall reliability. It is clear that, for
this formulation of the Hudson performance function, wave height is dominant
and that all other variables could be considered to be constants without signifi-
cantly affecting the calculation. This is due to the fact that the wave height is
cubed in the performance function, and is due to the broad wave height distribu-
tion. If a narrower wave height distribution were used, the influence of the sta-
bility coefficient could be similar to that of the wave height.
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Table 3
TSFD Reliability Calculation for Hudson Limit State l

Armor Struc- Hudson Armor Wave Safety Finite Influ-
Weight ture Coeff. Specific Height | Factor Differ- ence
Slope Weight ence Factor
w cot B KD Y H F oF/ox oY o?
kg | kg/m® m %
45013 2 2.59 2,405 2.70 10.97 0.1003 0.1 |
I 36829 2 2.59 2,405 270 10.75
" 40921 2.1 2.59 2,405 2.70 11.40 0.0500 0.0
II 40921 1.9 2.59 2,405 2.70 10.32
40921 2 3.24 2,405 2.70 13.58 0.2564 0.3
40921 2 1.94 2,405 2.70 8.13
40921 2 2.59 2,477 2.70 12.18 0.1271 0.1
40921 2 2.59 2,333 270 9.62
40921 2 2.59 2,405 41 3.08 -1.740 99.5 "
40921 2 2.59 2,405 1.256 99.78 Il

Comparison of reliability methods for Hudson performance function

Results from the Level II calculations, applied to the Hudson limit state, are
summarized in Table 4 for a single stone armor weight and other parameters
listed in Table 2. The stone weight of 41 tons utilized corresponds to K, = 2, as
the most conservative recommendation in the SPM. It is clear from Table 4 that
the TSFD gives a more conservative result than the ITSFD method. The TSFD
is simpler but accuracy is sacrificed. Note that reliability was computed using
the ITSFD approach with two different versions of the Hudson equation perfor-
mance function. The resulting reliability and reliability index were identical.
Therefore, the ITSFD was verified to be invariant to the form of the limit state.

Table 4
Comparison of Taylor Series Approximations of Reliability for
Hudson Limit State

Reliability Computation Reliability Reliability Difference in R
Method Index From ITSFD

il I N

ITSFD (Equation 3) 0.98 2.0 - l

“ ITSFD (Equation 4) 0.98 2.0 - "

|

Il TSFD 0.91 1.4 -7 I
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Van der Meer Armor Stability Limit State

Armor stability equations for two-dimensional trunk sections were proposed
by van der Meer (1987) for stone, cubes, Accropodes, and Tetrapods. Although
not verified for general use in three-dimensional breakwater applications, these
equations provide insight into various parameters of interest in stability, includ-
ing wave period, porosity, degree of damage, and duration of storm, that are not
included explicitly in the Hudson equation. The equations have been rearranged
into limit state relations as follows:

STONE, £ < &,
g = K,62AD, m 5§02 po0.s Sm0~25 N0l _ H, (30)

STONE, £ > &,
g = K,10AD, cotf@> 'P)S°2P'°'13S,,:°5PN o1 H (B

1
E - (6.2P°'31 mmz (32)

where & = tan0/(S,)°, S,, = H,/L,, L,= gT/2x, T, is the mean wave period, P is
the structure porosity, S is the degree of damage, N is the number of waves, and
K, and K, are empirical coefficients. '

CUBES
o N
g = . + 1. -
KD, 5,672 + 10| -, (33)
TETRAPODS
of 37
g = KtADn Sm 375—& + 0.85] - Hs (34)
N
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where N, is the zero-damage number of waves. Table 5 provides sample statis-
tics for application of the various parameters in the equations listed above.

Figure 6 compares the ITSFD method applied to the van der Meer equations
to that from the Hudson equation. For these input conditions, the two equations
yield very similar reliability values for the range of armor weights. Comparing
van der Meer equations with the Hudson results, it is clear that the van der Meer
equations yield a higher reliability than does the Hudson equation.

Table 5
Statistics for Van der Meer Equation Limit State Variables

Random Mean Standard Coefficient of Varia-
Variable Deviation tion
o

Stone nom. Range Range 0.01

diameter, D,

Stone stab. eq. coef- 6.2 0.4 0.065

ficient, K,

Stone stab. eq. coef- 1.0 0.08 0.08

ficient, K,

Stone specific grav- 2.6 0.08 0.03

ity! Sl‘

Tetrapod nom. diam- Range . Range 0.0

eter, D, ’

Tetrapod eq. coeffi- 1.0 0.1 0.10
Jl cient, K, :

Concrete spec. grav- 2.34 0.07 0.03

ity, S,

Cube nom. Range Range 0.0

diameter, D,

Cube eq. coefficient, 1.0 0.1 0.10

K

Wave height, H 270m 141m 0.52

Wave steepness, S, 0.04 0.01 0.25
" Porosity, P 0.5 0.05 0.10
" Number of waves, N 2000 600 0.03
|| Structure slope, cot8 2.0 0.1 0.05

— __  —

Concrete Armor Structural Limit State

The concrete armor unit strength design methods of Melby (1989, 1993)
provide a Level III reliability-based analysis method where various loading dis-
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tributions are convolved to determine a design load distribution. Here, the de-
mand is characterized as a design tensile stress for the armor layer and the ca-
pacity is the tensile strength of the unreinforced concrete. A design probability
of exceedance is specified in order to determine the design stress from the total
stress probability distribution. This design stress is compared with a predefined
capacity, a fatigue-reduced concrete strength. For this Level III analysis
method, the design probability of exceedance E is used to determine a design
stress from the maximum stress design probability distribution. This design
exceedance is characterized as the probability of exceeding the design stress in
the armor layer.

To relate the Level III methods to the Level II analysis method, the design
exceedance is related to P through the basic reliability relation E =1-R = 1-®(f).
For concrete armor units, the limiting state of structural performance is given by

g=f-0.=0 (35)

where f, is the flexural tensile strength and o, is the maximum principal tensile
stress in the armor unit. Ellingwood et al. (1980) summarized a number of stud-
ies of the distribution of the tensile strength of concrete and, based on this work,
a coefficient of variation of 18 percent is suggested (Mlakar 1995). The distri-
bution of o, is computed in PC-ARMOR (Melby 1989, 1993) and used in the
reliability analysis to determine the reliability with respect to armor strength.

An example calculation was done using PCARMOR to compute a mean of
3.05 MPa and a standard deviation of 1.46 MPa. The results of a simple analysis
are shown in Figure 8.

o 3.5 )/_/,__.:—.—:—1
§235 ol 09
c = " "
.:-3-. 2 // /_,*5’/’ '—0-8 g
o 1/ @
X /s 10.6
05 1/
0 _/: } + } + + } } ¢ | ; 0.5
28 41 55 69 83 97 11

Armor Strength (MPa)

~®- Strength R - Strength B

Figure 8. ITSFD solution for dolos structural limit state
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Runup and Overtopping Limit States

As stated previously, the performance functions of SPM sections 7-II-1 and
7-1I-2 are used for runup and overtopping, respectively. The equation for runup
is given as

= 1[1 -exp(-&/2)] (36)

L

where R is the significant runup, H, the significant wave height, and & the surf
similarity parameter as used previously. A safety margin limit state can be de-
fined as the difference between the freeboard f and the runup

g =f - R =f - L1H[1 -exp(-£/2)] 37

The safety factor limit state could be stated as F = f/R.

For overtopping, the equation given in the SPM is

K, = (0.51 - 0.11B/h)(1.0 - f/R) (398)

where K, is the coefficient for transmission by overtopping, B the crest width,
and h the crest height from the bottom. The safety margin limit state equation
can be expressed as

g = Hy,, - KpH (39

Both runup and overtopping have been incorporated into the ITSFD reliabil-
ity methods and the safety margin relations encoded similar to the example
given in Appendix A. Input statistics for the calculations are shown in Table 6.
Results from an example computation are shown in Figures 9 and 10.
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Table 6
Statistics for Runup and Overtopping Limit State Variables
Random Mean Standard Coefficient of Varia-
Variable Deviation tion
p o cov %
Freeboard, f Range Range 5
Crest width, B 213 m 0.11m 5
Crest height, h 3.66 m 0.18 m 5
Wave height, H 270m 141 m 5
Wave period, T 10 sec 1 sec 10
Transmitted wave range range 5
“ height, H,
5 - -1
. //./t
3 o
>4 0.9 o
© -
= o ~ 3
5 = o
2 0.7
® e o
1 0.6
-/ ___,@’
0 +—= ! t 0.5
1.5 3.1 4.6 6.1 7.6
Freeboard (m)
™ RunupR  “® RunupB

Figure 9. ITSFD solution for runup limit state
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Figure 10. ITSFD solution for overtopping limit state
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4 Conclusions

In this report, several level II reliability techniques are discussed and applied
to breakwater design. Using these methods, the reliability and reliability index
are determined for the dominant performance functions of a breakwater includ-
ing stone and concrete armor stability, concrete armor structural response, runup,
and overtopping. The methods include Taylor series finite difference (TSFD)
methods, which are shown to be easily computed using a handheld calculator or
spreadsheet. The TSFD method is shown to yield reasonable accuracy for pre-
liminary comparison of various alternatives. An invariant iterative TSFD
method and associated FORTRAN program are shown, which provide an im-
proved approximation to the reliability for design and evaluation purposes.
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Appendix A Computer Pro-
gram Listings

Appendix A Computer Program Listings

A1




A2

PROGRAM RELIABLE

Level Il iterative invariant first order Taylor series design point
reliability engine. Program computes reliability and reliability index
for a range of independent variable values. The algorithm is invariant
with respect to the form of the limit state equation.

The limit state equation is computed in the subroutine LIMSTATE.
The program computes various values of the independent variable in
subroutine DEP_MEAN.

Data are input from a user-edited file called R_INPUT.DAT and data are
Output to a file called R_OUTPUT.DAT.

Melby 11/95
SCALAR DEFINITION
betaz Reliability Index at z
betaz_p Reliability Index at design point
9 Limit state
gz Limit state at z
1,J Indices for random variable
ik# Iteration kounter #
ikl index
LAMBDA Linear coefficient between 2’ and g
NumRV Number of random variables
R Reliability
cov std / mean
zd z at design point

VECTOR DEFINITION
grad_g(NumRV)  Gradient of limit state
Mean(NumRV),m Means

Std(NumRV),s Standard devs

X(NumRV) Random variables

2(NumRV) Standard normal random variables
zp(NumRV) Design point

OOQOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOO

PARAMETER (NRV=10)

REAL mean(NRV), Std(NRV), z(NRV), zp(NRV), grad_g(NRV)
REAL Const{NRV), cov(NRV), x(NRV), lambda

CHARACTER textc(NRV)*15, textR(NRV)*15, header*60, texth*15

QOO0

Open IO files

OPEN(5, FILE='R_input.dat’, status="old")
OPEN(2, FILE='R_output.dat', status="unknown’)

Read input data file

QA0 00

PRINT*,” Program will now read input file named R_input.dat
PRINT*
PRINT*," input statistics for each variable are input in this file. For each random’

PRINT*,’ variable, the mean, std. Dev., and coef. of variation are read. Only the mean’

PRINT*,” and s.d. are required for each variable except the last one input, which’

PRINT”," will be treated as the dependent variable and the reliability computed over a*

PRINT*,” range of values.’

PRINT*

PAUSE

READ(1,'(A80)")header

PRINT",header

READ(1,'(A60Y )header

PRINT*,header

READ(1,")texth, numRV, NumConst, NumDepVar
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PRINT*

PRINT*’ --------- Values read from input file ------------'
PRINT*," Number of random variables’, NumRV
PRINT*,” Number of constants’,NumConst

PRINT",” Number of variable calculations’,NumDepVar

PRINT*

READ(1,'(A60) Yheader

PRINT*," ~meeesaenn Random variable statistics read from input file ==-s------- ’
PRINT*,” Param Mean Std Dev  Coef of Var'

PRINT*, ’

DO 5, ik0 = 1, NumRV
READ(1,") textrv(ik0), mean(ik0), Std(ik0), Cov(ik0)
PRINT*, textrv(ik0), mean(ik0), Std(ik0), Cov(ik0)
CONTINUE
READ(1,'(A80))
PRINT*
PRINT*, —--eemme Constants read from input file ====svew---- !
PRINT*, Constant Value *
PRINT*, !
DO 6, ik0 = 1, NumConst
READ(1,*) textc(ik0), Const(ik0)
PRINT*, textc(ik0), Const(ik0)
CONTINUE
PRINT*
PRINT*,’ Values OK? if not, press CTRL-C and modify the input file’
PAUSE

Write output file headers

o000

c

WRITE(2,*) Output data file from RELIABLE’

WRITE(2,*)

WRITE(2,*) -~ Constants read from input file -----s-se-mreeex !

WRITE(2,*y Number of random variables, constants, and dependent var. calcs.’
WRITE(2,*) !
WRITE(2,")NumRV, NumConst, NumDepVar

WRITE(2,")

WRITE(2,*)’ --=--er-m--m-- Parameters read from input file ----emeeennnzn0’
WRITE(2,") texth = ‘texth, NumRV =, numRYV, * NumConst = ‘, NumConst
WRITE(2,*)

WRITE(2,*)’ Parameter Mean Std. Dev. Coef. of Var.’
WRITE(2,*) !

DO 7 ik0 = 1, NumRV
WRITE(2,”) textrv(ik0), mean(ik0), Std(ik0), Cov(ik0)
CONTINUE
WRITE(2,)
WRITE(2,"y Constant Value’

DO 8 ik0=1, NumConst
WRITE(2,*) textc(ik0), Const(ik0)
CONTINUE
WRITE(2,*)
WRITE(2,*) =esem-------- Output ReSUIts -+v-nmemmmeeeeees ’
WRITE(2,")
WRITE(2,") Mean Beta R
WRITE(2,*y ’

(o}

C

¢ Initialize variables

10
c

DO 10 kount = 1,NumRV-1
z(kount) = 0.0
CONTINUE
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c
¢ Begin Computations
C

DO 20 ikl=1, NumDepVar
CALL DEP_MEAN(ikl, mean, NRV, Const, NumRV)
Std(NumRV) = cov(NumRV) * Mean(NumRV)
Z(NumRV) = 0.0
betaz = 0.0
30 CONTINUE

CALL LIMSTATE(z, x, std, mean, Const, g, NRV, NumRV)
g9z=g

grad_g0=0.0

zd=0.0

DO 40 ik2 = 1,NumRV
z(ik2) = z(ik2) + 0.001
CALL LIMSTATE(z, x, std, mean, Const, g, NRV, NumRV)
z(ik2) = z(ik2) - 0.001
grad_g(ik2) = (g - gz)/0.001
grad_g0 = grad_g0 + grad_g(ik2)*grad_g(ik2)
zd = zd + z(ik2) * grad_g(ik2)
40 CONTINUE
c
lambda = (zd - gz) / grad_g0
c
¢ Find zp and betaz_P
betaz_P = 0.0
DO 50 ik3 = 1,NumRV
zp(ik3) = lambda * grad_g(ik3)
betaz_P = betaz_P + zp(ik3) * zp(ik3)
50 CONTINUE
betaz_P = SQRT(betaz_P)
IF(ABS(betaz_P - betaz) .LT. 0.001) GOTO 90
betaz = betaz_P

DO 60 ik4 = 1,NumRV
z(ik4) = zp(ik4)

60 CONTINUE
GOTO 30
90 CONTINUE ! solution converged

c
¢ Hastings rational approximation for normal reliability
R=1.-05/(1. + 0.196854 "betaz_P +0.115194*betaz_P*betaz_P+
& 0.000344*betaz_P**3 + 0.019527"betaz_P**4)**4
c
WRITE(2,100) mean(NumRV), betaz_P, R
100 FORMAT(1x, 3(F15.3))
20 CONTINUE
CLOSE(1)
CLOSE(2)
STOP
END
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SUBROUTINE iimstate(z, x, s, m, C, g, NRV, NumRV)
REAL z(NRV), x(NRV), s(NRV), m(NRV), C(NRV)

¢ Hudson Stability Equation

¢ Random Variables, mean, standard deviation

¢ Concr Specific Wt Gamma_r m(1) s(1)
¢ Structure Slope cot_theta m(2) s(2)
¢ Coefficient KD m{(3) s(3)
¢ Wave Height H m(4) s(4)
¢ Armor Weight w m(5) s(5)
c

¢ Constants

¢ H20 Specific Weight Gamma_w c(1)

c

DO 10 j=1,NumRV
x(0) = z() * s() + m()

10 CONTINUE
Delta = x(1)/C(1) - 1.
g =x(2) * x(3) * Delta™3 * x(5) - x(1) * x(4)**3
RETURN
END
SUBROUTINE dep_mean(kount, m, NRV, C, NumRV)
REAL m(NRV), C(NRV)
¢ Hudson Stability Equation
¢ Random Variables, mean, standard deviation
¢ Concr Specific Wt Gamma_r m(1) s(1)
¢ Structure Slope cot_theta m(2) s(2)
¢ Coefficient KD m(3) s(3)
¢ Wave Height H m(4) s(4)
¢ Amor Weight w m(5) s(5)
c
¢ Constants
¢ H20 Specific Weight Gamma_w c(1)
c

Delta = m(1)/C(1) - 1

m(NumRV) = FLOAT(kount)* m(1)* (m(4)/Delta)**3 / m(3)/ m(2)
RETURN

END
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Hudson Damage Function Reliability Input in File R_INPUT.DAT

Sample Stone Stability Run, Melby, 19 Nov 1995
Constants 5 1 11

Input Random Variable Statistics

Gamma_r 24050 720 -1.
cot 2. 0.1 -1.
KD 2.59 0.65 -1.
H 2.70 141~ -1,
w -1.0 -1.0 0.2

input Constants in Limit State Equation

Gamma_w

1024.0

Output data file from RELIABLE

----------------- Constants read from input file ---------------- )
Number of random variables, constants, and dependent var. caics.

5 1

11

------mmm---—--- Params read from input file ------------omeeev

texth = Constants NumRV =5 NumConst= 1
Parameter Mean Std Dev Coef of Var
Gamma_r 2405.0 72.000 -1.0000
cot 2.0000 0.1000 -1.0000
KD 2.5800 0.6500 -1.0000
H 2.7000 1.4100 -1.0000
w -1.000 -1.000 0.20000
Constant Value
Gamma_w 1024.0
------------------ Output Results -----=====r=mueee
Mean Beta R
3768.453 0.000 0.500
7536.913 0.483 0.686
11305.357 0.815 0.792
15073.811 1.074 0.858
18842.263 1.289 0.901
22610.715 1.473 0.930
26379.168 1.635 0.949
30147.622 1.780 0.963
33916.074 1.912 0.972
37684.526 2.032 0.979
41452.977 2.142 0.984
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